Landing site selection for Luna-Glob mission in crater Boguslawsky

نویسندگان

  • M. A. Ivanov
  • H. Hiesinger
چکیده

Boguslawsky crater (72.9°S, 43.3°E, 100 km in diameter) is a primary target for the Luna-Glob mission. The crater has a morphologically smooth (at the resolution of WAC images), flat, and horizontal floor, which is about 55–60 km in diameter. Two ellipses were selected as specific candidate landing areas on the floor: the western ellipse is centered at 72.9°S, 41.3°E and the eastern ellipse is centered at 73.9°S, 43.9°E. Both ellipses represent areas from which Earth is visible during the entire year of 2016 and lack permanently shadowed areas. Boguslawsky crater is located on or near the rim of the South Pole–Aitken basin, which provides the unique possibility to sample some of the most ancient rocks on the Moon that probably pre-date the SPA impact event. The low depth/diameter ratio of Boguslawsky suggests that the crater has been partly filled after its formation. Although volcanic flooding of the crater cannot be ruled out, the more likely process of filling of Boguslawsky is the emplacement of ejecta from nearby and remote large craters/basins. Three morphologically distinctive units are the most abundant within the selected landing ellipses: rolling plains (rpc), flat plains (fp), and ejecta from crater Boguslawsky-D (ejf), which occurs on the eastern wall of Boguslawsky. The possible contribution of materials from unknown sources makes the flat and rolling plains less desirable targets for landing. In contrast, ejecta from Boguslawsky-D represents local materials re-distributed by the Boguslawsky-D impact from the wall onto the floor of Boguslawsky. Thus, this unit, which constitutes about 50% of the eastern landing ellipse, represents a target of clearer provenance and a higher scientific priority. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age of Giordano Bruno crater as deduced from the morphology of its secondaries at the Luna 24 landing site

We undertook a photogeologic study of Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images of the ejecta of the very young 22-km diameter crater Giordano Bruno (GB) and for the Luna 24 landing site region, where secondary craters from Giordano Bruno are observed. Using the technique of Basilevsky (1976) for estimating the absolute ages of small lunar craters based on thei...

متن کامل

Assessing Gale Crater as a Potential Human Mission Landing Site on Mars

Introduction: Mars is the " horizon goal " for human space flight [1]. Towards that endeavor, one must consider several factors in regards to choosing a landing site suitable for a human-rated mission including: entry, descent, and landing (EDL) characteristics, scientific diversity, and possible insitu resources [2]. Selecting any one place is a careful balance of reducing risks and increasing...

متن کامل

Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites

Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient...

متن کامل

A Landmark Based Pinpoint Landing Simulator

Real-time position estimation for a descent lander is a critical technological need for many planned NASA missions. In particular, it enables the ability to land precisely and safely in a scientifically promising but hazardous site and is a key technology to be demonstrated by NASA in the next decade. The primary question of pinpoint landing is how to localize the lander by recognizing landmark...

متن کامل

Ground Truth Assessment of the Gale Crater Region Using Mars Science Laboratory Data for Characterization of Potential Human Mission Landing Site and in Situ Resource Utilization

Introduction: Instruments and cameras on board the Mars Science Laboratory (MSL) rover give ground truth information on chemistry, terrain, and atmospheric characteristics of the rover's traverse to Mount Sharp in the center of Gale crater. Analysis of this unique and robust data set allows for a thought experiment to determine the ability of a future robotics-assisted human mission to survive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015